We present Gaptron, a randomized first-order algorithm for online multiclass classification. In the full information setting we show expected mistake bounds with respect to the logistic loss, hinge loss, and the smooth hinge loss with constant regret, where the expectation is with respect to the learner's randomness. In the bandit classification setting we show that Gaptron is the first linear time algorithm with $O(K\sqrt{T})$ expected regret, where $K$ is the number of classes. Additionally, the expected mistake bound of Gaptron does not depend on the dimension of the feature vector, contrary to previous algorithms with $O(K\sqrt{T})$ regret in the bandit classification setting. We present a new proof technique that exploits the gap between the zero-one loss and surrogate losses rather than exploiting properties such as exp-concavity or mixability, which are traditionally used to prove logarithmic or constant regret bounds.


翻译:我们展示了Gaptron(Gaptron),这是用于在线多级分类的随机一阶算法。在完整的信息设置中,我们展示了后勤损失的预期误差界限,断裂了损失,而顺滑的断断断断断断断断断断,不断后悔,对学习者随机性的期望。在土匪分类设置中,我们展示了Gaptron(Gaptron)是第一个使用$O(K\sqrt{T})的线性时间算法,预期的误差是分级数。此外,Gaptron(Gaptron)的预期误差并不取决于特性矢量的尺寸,这与以前用$O(K\sqrt{T})的算法相反。我们展示了一种新的证据技术,它利用零一损失与超额损失和超额损失之间的鸿沟,而不是利用诸如Exconity或混合性等特性,这些特性传统上用来证明对数或常数的后悔界限。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员