Semi-online algorithms that are allowed to perform a bounded amount of repacking achieve guaranteed good worst-case behaviour in a more realistic setting. Most of the previous works focused on minimization problems that aim to minimize some costs. In this work, we study maximization problems that aim to maximize their profit. We mostly focus on a class of problems that we call choosing problems, where a maximum profit subset of a set objects has to be maintained. Many known problems, such as Knapsack, MaximumIndependentSet and variations of these, are part of this class. We present a framework for choosing problems that allows us to transfer offline $\alpha$-approximation algorithms into $(\alpha-epsilon)$-competitive semi-online algorithms with amortized migration $O(1/\epsilon)$. Moreover we complement these positive results with lower bounds that show that our results are tight in the sense that no amortized migration of $o(1/\epsilon)$ is possible.
翻译:允许在更现实的环境下进行一定数量的重新包装的半线算法能够实现保证最坏情况的良好行为。 以往的多数工作都侧重于尽量减少问题, 以尽量减少某些成本。 在这项工作中, 我们研究最大化问题, 目的是最大限度地增加利润。 我们大多侧重于我们称之为选择问题的一类问题, 即必须维持一组物体的最大利润子集。 许多已知问题, 如Knapsack、 最大独立Set 和这些变量的变异, 都属于这一类。 我们提出了一个选择问题的框架, 以便我们能够将具有竞争力的美元( alpha- epsilon) 的半线性算法转换成美元( alpha- epsilon) 和 美元( 1/\ epsilon) 的折价移徙 。 此外, 我们用较低的界限来补充这些正面结果, 这表明我们的结果非常紧张, 没有美元( 1/\ eepsilon) 的折价移徙的可能性 。