In this paper, we analyze the higher-order Allan variance for atomic clock models of arbitrary order. Adopting a standard atomic clock model where the time series of the clock reading deviation is expressed as a Wiener or integrated Wiener process, we define the higher-order Allan variance as the mean squared higher-order difference of clock reading deviation. The main results of this paper are threefold. First, we prove that the higher-order difference operation of clock reading deviation, which can be interpreted as a linear aggregation with binomial coefficients, is not only sufficient, but also necessary for a resultant aggregated time series to be an independent and identically distributed Gaussian process. Second, we derive a complete analytical expression of the higher-order Allan variance, composed of both time-dependent and time-independent terms. Third and finally, we prove that the higher-order Allan variance is time independent if and only if the order of difference is greater than or equal to the order of atomic clock models.


翻译:在本文中, 我们分析原子时钟模式的更高顺序差异。 采用标准原子时钟模式, 时钟读数偏差的时间序列以 Wiener 或集成 Wiener 进程表示, 我们将高顺序差异定义为时钟读数偏差的平均正方位高顺序差异。 本文的主要结果有三重。 首先, 我们证明, 钟读数偏差的较高顺序差异功能可以被解释为带有二元系数的线性汇总, 不仅足够, 并且对于由此产生的汇总时间序列成为一个独立和相同分布的高斯进程也是必要的。 其次, 我们对高顺序差异进行了完整的分析表达, 包括时间独立和时间独立的术语。 第三, 最后, 我们证明, 较高顺序的 Allan 差异在时间上是独立的, 只要差异顺序大于或等于原子钟模型的顺序, 并且只有在时间上是独立的。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月30日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员