In this paper, we analyze the higher-order Allan variance for atomic clock models of arbitrary order. Adopting a standard atomic clock model where the time series of the clock reading deviation is expressed as a Wiener or integrated Wiener process, we define the higher-order Allan variance as the mean squared higher-order difference of clock reading deviation. The main results of this paper are threefold. First, we prove that the higher-order difference operation of clock reading deviation, which can be interpreted as a linear aggregation with binomial coefficients, is not only sufficient, but also necessary for a resultant aggregated time series to be an independent and identically distributed Gaussian process. Second, we derive a complete analytical expression of the higher-order Allan variance, composed of both time-dependent and time-independent terms. Third and finally, we prove that the higher-order Allan variance is time independent if and only if the order of difference is greater than or equal to the order of atomic clock models.
翻译:在本文中, 我们分析原子时钟模式的更高顺序差异。 采用标准原子时钟模式, 时钟读数偏差的时间序列以 Wiener 或集成 Wiener 进程表示, 我们将高顺序差异定义为时钟读数偏差的平均正方位高顺序差异。 本文的主要结果有三重。 首先, 我们证明, 钟读数偏差的较高顺序差异功能可以被解释为带有二元系数的线性汇总, 不仅足够, 并且对于由此产生的汇总时间序列成为一个独立和相同分布的高斯进程也是必要的。 其次, 我们对高顺序差异进行了完整的分析表达, 包括时间独立和时间独立的术语。 第三, 最后, 我们证明, 较高顺序的 Allan 差异在时间上是独立的, 只要差异顺序大于或等于原子钟模型的顺序, 并且只有在时间上是独立的。