Automatic syllable stress detection is a crucial component in Computer-Assisted Language Learning (CALL) systems for language learners. Current stress detection models are typically trained on clean speech, which may not be robust in real-world scenarios where background noise is prevalent. To address this, speech enhancement (SE) models, designed to enhance speech by removing noise, might be employed, but their impact on preserving syllable stress patterns is not well studied. This study examines how different SE models, representing discriminative and generative modeling approaches, affect syllable stress detection under noisy conditions. We assess these models by applying them to speech data with varying signal-to-noise ratios (SNRs) from 0 to 20 dB, and evaluating their effectiveness in maintaining stress patterns. Additionally, we explore different feature sets to determine which ones are most effective for capturing stress patterns amidst noise. To further understand the impact of SE models, a human-based perceptual study is conducted to compare the perceived stress patterns in SE-enhanced speech with those in clean speech, providing insights into how well these models preserve syllable stress as perceived by listeners. Experiments are performed on English speech data from non-native speakers of German and Italian. And the results reveal that the stress detection performance is robust with the generative SE models when heuristic features are used. Also, the observations from the perceptual study are consistent with the stress detection outcomes under all SE models.
翻译:暂无翻译