Throughout the food supply chain, between production, transportation, packaging, and green employment, a plethora of indicators cover the environmental footprint and resource use. By defining and tracking the more inefficient practices of the food supply chain and their effects, we can better understand how to improve agricultural performance, track nutrition values, and focus on the reduction of a major risk to the environment while contributing to food security. Our aim is to propose a framework for a food supply chain, devoted to the vision of zero waste and zero emissions, and at the same time, fulfilling the broad commitment on inclusive green economy within the climate action. To set the groundwork for a smart city solution which achieves this vision, main indicators and evaluation frameworks are introduced, followed by the drill down into most crucial problems, both globally and locally, in a case study in north Italy. Methane is on the rise in the climate agenda, and specifically in Italy emission mitigation is difficult to achieve in the farming sector. Accordingly, going from the generic frameworks towards a federation deployment, we provide the reasoning for a cost-effective use case in the domain of food, to create a valuable digital twin. A Bayesian approach to assess use cases and select preferred scenarios is proposed, realizing the potential of the digital twin flexibility with FAIR data, while understanding and acting to achieve environmental and social goals, i.e., coping uncertainties, and combining green employment and food security. The proposed framework can be adjusted to organizational, financial, and political considerations in different locations worldwide, rethinking the value of information in the context of FAIR data in digital twins.


翻译:在整个食品供应链中,在生产、运输、包装和绿色就业之间,有大量指标涵盖环境足迹和资源使用。通过界定和跟踪食品供应链中效率更低的做法及其影响,我们可以更好地了解如何改善农业绩效,跟踪营养价值,并注重减少环境的重大风险,同时促进粮食安全。我们的目标是提出食品供应链框架,专门着眼于零浪费和零排放的愿景,同时在气候行动范围内履行包容性绿色经济的广泛承诺。为智能城市解决方案奠定基础,实现这一愿景,引入主要指标和评价框架,然后在意大利北部的案例研究中,从全球和地方层面深入探讨最为关键的问题。甲烷正在增加气候议程,特别是在意大利,难以在农业部门实现减排目标。因此,从一般框架到联邦部署,我们可以为在食品领域以具有成本效益的方式使用全球包容性绿色经济案例提供理由。 采用贝耶斯办法,在评估全球和地方层面的最为关键的问题,然后从全球和地方层面着手进行钻探。 为实现绿色安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、安全、

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员