Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile.
翻译:学习人机交互数据中的潜在表示通常是生成高质量推荐的方法。这些方法虽然表现良好,但无法为用户提供控制推荐结果的机制。我们的工作通过提出一种新的概念聚合模型 LACE 来解决这个问题,用于可控文本推荐。LACE 通过使用用户交互文件进行检索,并基于用户文件学习概念的个性化表示来代表每个用户的简洁的可读的概念集。然后,利用这个基于概念的用户档案来做出推荐。我们的模型设计通过对透明的用户档案进行一些直观的交互方法,实现对推荐结果的控制。我们首先在三个推荐任务和六个数据集上进行离线评估,验证了 LACE 的推荐质量,在不同的预热、冷启动和零热启动的情况下评估模型的性能。接着,我们验证了 LACE 在模拟用户交互下的可控性。最后,我们将 LACE 实现在一个交互式可控推荐系统中,并开展了一个用户研究,证明通过编辑用户档案可以改善用户所接收的推荐质量。