We show that some natural problems that are XNLP-hard (which implies W[t]-hardness for all t) when parameterized by pathwidth or treewidth, become FPT when parameterized by stable gonality, a novel graph parameter based on optimal maps from graphs to trees. The problems we consider are classical flow and orientation problems, such as Undirected Flow with Lower Bounds (which is strongly NP-complete, as shown by Itai), Minimum Maximum Outdegree (for which W[1]-hardness for treewidth was proven by Szeider), and capacitated optimization problems such as Capacitated (Red-Blue) Dominating Set (for which W[1]-hardness was proven by Dom, Lokshtanov, Saurabh and Villanger). Our hardness proofs (that beat existing results) use reduction to a recent XNLP-complete problem (Accepting Non-deterministic Checking Counter Machine). The new easy parameterized algorithms use a novel notion of weighted tree partition with an associated parameter that we call treebreadth, inspired by Seese's notion of tree-partite graphs, as well as techniques from dynamical programming and integer linear programming.
翻译:我们展示了一些自然问题, 这些自然问题是 XNLP-hard( 意指所有树枝的W[ t] 硬度), 当用路径线或树线线参数参数参数参数参数化时, 这些自然问题就变成了FPT( 以稳定的音质参数参数化, 这是基于从图形到树的最佳地图的新颖图表参数 。 我们所考虑的问题是典型的流和方向问题, 例如无方向的下界图( 强烈的NP- 完整, 如伊泰所显示 ) 、 最小最大体外度( 接受非确定性检查树枝的 W[ 1 硬度, 由Szeider所证明 ), 以及功能优化优化的功能化优化问题, 如 Capacited( 红色蓝色) 集( 硬度值由 Dom、 Lokshtanov、 Saurabh 和 Villanger 所证明 ) 。 我们的硬性证明( 胜过现有结果) 用于最近的 XNLP- 完整的问题( 问题 ( 接受非决定性检查反机器 ) ) 。 和 新的参数化算法 。, 新的简单化算算法使用一个重的精化的精化的精化,,, 的精化的精化的精制成的精制成的精制成的精制成, 。