Fair resource allocation is one of the most important topics in communication networks. Existing solutions almost exclusively assume each user utility function is known and concave. This paper seeks to answer the following question: how to allocate resources when utility functions are unknown, even to the users? This answer has become increasingly important in the next-generation AI-aware communication networks where the user utilities are complex and their closed-forms are hard to obtain. In this paper, we provide a new solution using a distributed and data-driven bilevel optimization approach, where the lower level is a distributed network utility maximization (NUM) algorithm with concave surrogate utility functions, and the upper level is a data-driven learning algorithm to find the best surrogate utility functions that maximize the sum of true network utility. The proposed algorithm learns from data samples (utility values or gradient values) to autotune the surrogate utility functions to maximize the true network utility, so works for unknown utility functions. For the general network, we establish the nonasymptotic convergence rate of the proposed algorithm with nonconcave utility functions. The simulations validate our theoretical results and demonstrate the great effectiveness of the proposed method in a real-world network.


翻译:公平资源分配是通信网络中最重要的议题之一。 现有解决方案几乎完全假定每个用户使用功能都是已知的, 并且相互交织。 本文试图回答以下问题: 当使用功能未知时, 如何分配资源, 甚至给用户? 这个答案在下一代的 AI- aware 通信网络中变得日益重要, 因为用户公用事业复杂, 其封闭形式难以获得 。 在本文中, 我们使用分布式和数据驱动的双级优化方法, 提供了一个新的解决方案, 低层次是带有 concave 代理功能的分布式网络使用功能最大化算法, 高层次是数据驱动的学习算法, 以找到最佳的代理功能, 以最大化真实网络效用的总和 。 拟议的算法从数据样本( 利用率值或梯度值) 中学习自动调控管代理功能, 以最大限度地实现真正的网络效用, 从而实现未知的效用功能。 对于一般网络, 我们建立了与非 Concover 公用事业功能的拟议算法的不协调性合并率。 模拟了我们的理论结果, 并展示了拟议方法的巨大有效性 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员