Monumental advances in deep learning have led to unprecedented achievements across a multitude of domains. While the performance of deep neural networks is indubitable, the architectural design and interpretability of such models are nontrivial. Research has been introduced to automate the design of neural network architectures through neural architecture search (NAS). Recent progress has made these methods more pragmatic by exploiting distributed computation and novel optimization algorithms. However, there is little work in optimizing architectures for interpretability. To this end, we propose a multi-objective distributed NAS framework that optimizes for both task performance and introspection. We leverage the non-dominated sorting genetic algorithm (NSGA-II) and explainable AI (XAI) techniques to reward architectures that can be better comprehended by humans. The framework is evaluated on several image classification datasets. We demonstrate that jointly optimizing for introspection ability and task error leads to more disentangled architectures that perform within tolerable error.
翻译:深层学习的古迹进步在多个领域取得了前所未有的成就。 虽然深层神经网络的性能是不可置疑的, 但是这些模型的建筑设计和解释是非三相的。 已经引入了研究, 通过神经结构搜索( NAS) 将神经网络结构的设计自动化。 最近的进展使得这些方法更加务实, 利用分布式计算和新颖优化算法。 但是, 在优化可解释性结构方面几乎没有什么工作。 为此, 我们提议了一个多目标分布式NAS框架, 以优化任务性能和内窥镜两种方式。 我们利用非主控式的基因排序算法( NSGA- II) 和可解释的AI (XAI) 技术来奖励人类可以更好理解的架构。 该框架在几套图像分类数据集上进行了评估。 我们证明, 共同优化内演进化能力和任务错误导致更分解的架构在可容忍的错误范围内运行。