Click-through rate (CTR) estimation plays as a core function module in various personalized online services, including online advertising, recommender systems, and web search etc. From 2015, the success of deep learning started to benefit CTR estimation performance and now deep CTR models have been widely applied in many industrial platforms. In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks. First, we take a review of the transfer from shallow to deep CTR models and explain why going deep is a necessary trend of development. Second, we concentrate on explicit feature interaction learning modules of deep CTR models. Then, as an important perspective on large platforms with abundant user histories, deep behavior models are discussed. Moreover, the recently emerged automated methods for deep CTR architecture design are presented. Finally, we summarize the survey and discuss the future prospects of this field.


翻译:从2015年起,深层次学习的成功开始有利于CTR估计业绩,现在深入的CTR模型已在许多工业平台中广泛应用。在本次调查中,我们全面审查了CTR估算任务的深层次学习模型。首先,我们审查了从浅层到深层CTR模型的转移,并解释了深层的转移为什么是一个必要的发展趋势。第二,我们集中关注深层CTR模型的清晰特征互动学习模块。然后,作为拥有大量用户历史的大型平台的重要视角,我们讨论了深层行为模型。此外,还介绍了最近出现的深层CTR结构设计自动化方法。最后,我们总结了调查,并讨论了该领域的未来前景。

5
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员