This paper focuses on the regularization of backward time-fractional diffusion problem on unbounded domain. This problem is well-known to be ill-posed, whence the need of a regularization method in order to recover stable approximate solution. For the problem under consideration, we present a unified framework of regularization which covers some techniques such as Fourier regularization [19], mollification [12] and approximate-inverse [7]. We investigate a regularization technique with two major advantages: the simplicity of computation of the regularized solution and the avoid of truncation of high frequency components (so as to avoid undesirable oscillation on the resulting approximate-solution). Under classical Sobolev-smoothness conditions, we derive order-optimal error estimates between the approximate solution and the exact solution in the case where both the data and the model are only approximately known. In addition, an order-optimal a-posteriori parameter choice rule based on the Morozov principle is given. Finally, via some numerical experiments in two-dimensional space, we illustrate the efficiency of our regularization approach and we numerically confirm the theoretical convergence rates established in the paper.
翻译:本文侧重于将无限制域的后向时间偏差扩散问题正规化。 这个问题众所周知,众所周知,为了恢复稳定的近似解决办法,需要一种正规化方法来恢复稳定的近似解决办法。 关于审议中的问题,我们提出了一个统一的正规化框架,它涵盖一些技术,如Fourier正规化[19]、软体化[12]和近似反向[7]。我们研究了一种正规化技术,它有两个主要优点:正常化解决办法的计算简单和避免高频部件的脱轨(以避免由此产生的近似溶解出现不可取的悬浮)。在典型的 Sobolev-moooth 条件下,我们从大约的解决方案和数据与模型仅大致为人知的精确解决办法之间得出了顺序最佳的错误估计。此外,我们根据莫罗佐夫原则给出了一条定式最佳的近似参数选择规则。最后,通过在二维空间进行的一些数字实验,我们说明了我们的正规化方法的效率,我们从数字上确认了文件中确立的理论趋同率。