Molecular dynamics (MD) simulations provide considerable benefits for the investigation and experimentation of systems at atomic level. Their usage is widespread into several research fields, but their system size and timescale are also crucially limited by the computing power they can make use of. Performance engineering of MD kernels is therefore important to understand their bottlenecks and point out possible improvements. For that reason, we developed MD-Bench, a proxy-app for short-range MD kernels that implements state-of-the-art algorithms from multiple production applications such as LAMMPS and GROMACS. MD-Bench is intended to have simpler, understandable and extensible source code, as well as to be transparent and suitable for teaching, benchmarking and researching MD algorithms. In this paper we introduce MD-Bench, describe its design and structure and implemented algorithms. Finally, we show five usage examples of MD-Bench and describe how these are useful to have a deeper understanding of MD kernels from a performance point of view, also exposing some interesting performance insights.


翻译:分子动态(MD)模拟为原子级系统的调查和实验提供了相当大的好处。它们的使用在几个研究领域十分广泛,但它们的系统规模和时间尺度也受到它们能够使用的计算能力的限制。因此,MD内核的性能工程对于理解它们的瓶颈和指出可能的改进非常重要。因此,我们开发了MD-Bench,这是短程MD内核的代理应用程序,用于从LAMMPS和GROMACS等多种生产应用中应用最先进的算法。MD-Bench的目的是拥有更简单、易理解和可扩展的来源代码,以及透明并适合于MDM的教学、基准和研究。在本文中我们介绍MD-Bench,描述其设计和结构以及执行的算法。最后,我们展示了MD-Bench的五个例子,并描述这些例子如何有助于从性能角度更深入地了解MD内核,并揭示一些有趣的业绩洞察。</s>

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
28+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
49+阅读 · 2021年5月9日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员