For frequency division duplex systems, the essential downlink channel state information (CSI) feedback includes the links of compression, feedback, decompression and reconstruction to reduce the feedback overhead. One efficient CSI feedback method is the Auto-Encoder (AE) structure based on deep learning, yet facing problems in actual deployments, such as selecting the deployment mode when deploying in a cell with multiple complex scenarios. Rather than designing an AE network with huge complexity to deal with CSI of all scenarios, a more realistic mode is to divide the CSI dataset by region/scenario and use multiple relatively simple AE networks to handle subregions' CSI. However, both require high memory capacity for user equipment (UE) and are not suitable for low-level devices. In this paper, we propose a new user-friendly-designed framework based on the latter multi-tasking mode. Via Multi-Task Learning, our framework, Single-encoder-to-Multiple-decoders (S-to-M), designs the multiple independent AEs into a joint architecture: a shared encoder corresponds to multiple task-specific decoders. We also complete our framework with GateNet as a classifier to enable the base station autonomously select the right task-specific decoder corresponding to the subregion. Experiments on the simulating multi-scenario CSI dataset demonstrate our proposed S-to-M's advantages over the other benchmark modes, i.e., significantly reducing the model complexity and the UE's memory consumption
翻译:对于频率分解 复式系统, 基本的下行链路频道状态信息的反馈包括压缩、反馈、降低压缩和重建之间的联系,以减少反馈管理。 一种高效的 CSI 反馈方法是基于深层学习的自动编码(AE)结构,但是在实际部署方面面临着问题,比如在部署于多复杂情景的单元格时选择部署模式。 与其设计一个非常复杂的 AE 网络,处理 CSI 的所有情景, 更现实的方式是将 CSI 数据集按区域/ 预览分列, 并使用多个相对简单的 AE 网络处理 CSI 。 然而, 两者都需要用户设备( UE) 的高存储能力, 并且不适合低级别设备。 在本文中, 我们提出一个新的用户友好设计框架, 单一的C- enco- 至 M- decional- decoder, 将多个独立的 AERS 设计成一个联合架构: 一个共同的编码, 与多个任务具体选项匹配, 并选择了S- comperial IM 的S- decommillational Stateal laft as the squlational laviewal laft laft laft laft the sqal degil laft the Slifor degildal degildal stateds.