Understanding and predicting pedestrian dynamics has become essential for shaping safer, more responsive, and human-centered urban environments. This study conducts a comprehensive scientometric analysis of research on data-driven pedestrian trajectory prediction and crowd simulation, mapping its intellectual evolution and interdisciplinary structure. Using bibliometric data from the Web of Science Core Collection, we employ SciExplorer and Bibliometrix to identify major trends, influential contributors, and emerging frontiers. Results reveal a strong convergence between artificial intelligence, urban informatics, and crowd behavior modeling--driven by graph neural networks, transformers, and generative models. Beyond technical advances, the field increasingly informs urban mobility design, public safety planning, and digital twin development for smart cities. However, challenges remain in ensuring interpretability, inclusivity, and cross-domain transferability. By connecting methodological trajectories with urban applications, this work highlights how data-driven approaches can enrich urban governance and pave the way for adaptive, socially responsible mobility intelligence in future cities.
翻译:暂无翻译