In decision making tasks under uncertainty, humans display characteristic biases in seeking, integrating, and acting upon information relevant to the task. Here, we reexamine data from previous carefully designed experiments, collected at scale, that measured and catalogued these biases in aggregate form. We design deep learning models that replicate these biases in aggregate, while also capturing individual variation in behavior. A key finding of our work is that paucity of data collected from each individual subject can be overcome by sampling large numbers of subjects from the population, while still capturing individual differences. In addition, we can predict human behavior with high accuracy without making any assumptions about task goals, reward structure, or individual biases, thus providing a model-agnostic fit to human behavior in the task. Such an approach can sidestep potential limitations in modeler-specified inductive biases, and has implications for computational modeling of human cognitive function in general, and of human-AI interfaces in particular.
翻译:在不确定情况下的决策任务中,人类在寻找、整合和根据与任务相关的信息采取行动时表现出典型的偏见。在这里,我们重新审查以前精心设计的实验(在规模上收集的、以综合形式衡量和编目这些偏见的实验)中的数据。我们设计了深层次的学习模型,在总体上复制这些偏见,同时也捕捉了个人行为上的差异。我们工作的一个关键发现是,从每个主体收集的数据很少,可以通过从人口中抽样大量主题来克服,同时仍然捕捉个人差异。此外,我们可以非常准确地预测人类行为,而不对任务目标、奖励结构或个人偏见作出任何假设,从而在任务中为人类行为提供一种模型的认知性适合。 这种方法可以避开模型所指定的诱导偏见的潜在局限性,并影响人类认知功能的计算模型,特别是人类-AI界面的计算模型。