We study the problem of optimal sampling in an edge-based video analytics system (VAS), where sensor samples collected at a terminal device are offloaded to a back-end server that processes them and generates feedback for a user. Sampling the system with the maximum allowed frequency results in the timely detection of relevant events with minimum delay. However, it incurs high energy costs and causes unnecessary usage of network and compute resources via communication and processing of redundant samples. On the other hand, an infrequent sampling result in a higher delay in detecting the relevant event, thus increasing the idle energy usage and degrading the quality of experience in terms of responsiveness of the system. We quantify this sampling frequency trade-off as a weighted function between the number of samples and the responsiveness. We propose an energy-optimal aperiodic sampling policy that improves over the state-of-the-art optimal periodic sampling policy. Numerically, we show the proposed policy provides a consistent improvement of more than 10$\mathbf{\%}$ over the state-of-the-art.
翻译:我们研究边缘视频分析系统的最佳取样问题,在该系统中,在终端设备中采集的传感器样品被卸到一个后端服务器上,进行处理,并为用户提供反馈。用最大允许频率对系统进行取样,可以最短的延迟地及时发现有关事件。然而,它造成能源成本高,造成网络使用不必要,并通过通信和处理多余样品计算资源。另一方面,不经常取样导致相关事件的探测出现更长时间的延误,从而增加闲置能源的使用,并降低系统反应能力方面的经验质量。我们将这种取样频率交换量化为样品数量和反应能力之间的加权功能。我们建议采用一个节能最佳周期抽样政策,改善最新最佳定期取样政策。我们从数字上看,显示拟议政策持续改进了超过10美美美美分。