Pre-trained Language Models (PLMs) have shown excellent performance on various downstream tasks after fine-tuning. Nevertheless, the escalating concerns surrounding user privacy have posed significant challenges to centralized training reliant on extensive data collection. Federated learning, which only requires training on the clients and aggregates weights on the server without sharing data, has emerged as a solution. However, the substantial parameter size of PLMs places a significant burden on the computational resources of client devices, while also leading to costly communication expenses. Introducing Parameter-Efficient Fine-Tuning(PEFT) into federated learning can effectively address this problem. However, we observe that the non-IID data in federated learning leads to a gap in performance between the PEFT method and full parameter fine-tuning(FFT). To overcome this, we propose FeDeRA, an improvement over the Low-Rank Adaption(LoRA) method in federated learning. FeDeRA uses the same adapter module as LoRA. However, the difference lies in FeDeRA's initialization of the adapter module by performing Singular Value Decomposition (SVD) on the pre-trained matrix and selecting its principal components. We conducted extensive experiments, using RoBERTa and DeBERTaV3, on six datasets, comparing the methods including FFT and the other three different PEFT methods. FeDeRA outperforms all other PEFT methods and is comparable to or even surpasses the performance of FFT method. We also deployed federated learning on Jetson AGX Orin and compared the time required by different methods to achieve the target accuracy on specific tasks. Compared to FFT, FeDeRA reduces the training time by 95.9\%, 97.9\%, 96.9\% and 97.3\%, 96.5\%, 96.5\% respectively on three tasks using RoBERTa and DeBERTaV3. The overall experiments indicate that FeDeRA achieves good performance while also maintaining efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员