A well-known line of work (Barron, 1993; Breiman, 1993; Klusowski & Barron, 2018) provides bounds on the width $n$ of a ReLU two-layer neural network needed to approximate a function $f$ over the ball $\mathcal{B}_R(\R^d)$ up to error $\epsilon$, when the Fourier based quantity $C_f = \int_{\R^d} \|\xi\|^2 |\hat{f}(\xi)| \ d\xi$ is finite. More recently Ongie et al. (2019) used the Radon transform as a tool for analysis of infinite-width ReLU two-layer networks. In particular, they introduce the concept of Radon-based $\mathcal{R}$-norms and show that a function defined on $\R^d$ can be represented as an infinite-width two-layer neural network if and only if its $\mathcal{R}$-norm is finite. In this work, we extend the framework of Ongie et al. (2019) and define similar Radon-based semi-norms ($\mathcal{R}, \mathcal{U}$-norms) such that a function admits an infinite-width neural network representation on a bounded open set $\mathcal{U} \subseteq \R^d$ when its $\mathcal{R}, \mathcal{U}$-norm is finite. Building on this, we derive sparse (finite-width) neural network approximation bounds that refine those of Breiman (1993); Klusowski & Barron (2018). Finally, we show that infinite-width neural network representations on bounded open sets are not unique and study their structure, providing a functional view of mode connectivity.


翻译:众所周知的工作线 (Barron, 1993; Breiman, 1993; Klusowski & Barron, 2018) 提供ReLU 两层神经网络宽度的界限, 以在球上约合一美元 $mathcal{B ⁇ R( R ⁇ d) 美元, 直至错误$\ epsilon$, 当基于 $C_ f =\ int\\\\\\\ r} {xi ⁇ 2\ h{ h{ f} (\xi) {lusowkn_ dxxxi 美元是有限的。 最近 Ongi 等人( 2019) 将Radon 转换用作工具, 分析无线 relentre relaterl+mal{Brmal_ ralma} 的功能。 特别是, 它们引入了基于 $\ calmath} Rentral_ droal_ comma 的功能, 当它以 ral- ral- ral- ral_al_ lade lade a wemas lax lax lax lax lax lax a.

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员