We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.


翻译:我们研究随机矢量 $\ boldsylmbol X} 的密度估计问题。 对于在顶端设置 $1,\ dots, d ⁇ $ 美元上定义的横贯树的 $T$, 树密度 $f ⁇ T} 是双变量条件密度的产物。 覆盖树的最佳值是 $T$。 覆盖树的最佳值是 $T$, 树的宽度差值为$T$ 和 $f_T} 最小。 从 i. d. d. 我们确定最佳树的值$T ⁇ $, 并高效地构建树密度估计 $f_ 美元, 这样, 在不给密度设置任何常规条件的情况下, $\ lip\\\ t\ infty}\ pint lef_ n (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【综述】关键词生成,附10页pdf论文下载
专知会员服务
52+阅读 · 2019年11月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【收藏】机器学习的Pytorch实现资源集合【附下载链接】
机器学习算法与Python学习
10+阅读 · 2018年9月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【收藏】机器学习的Pytorch实现资源集合【附下载链接】
机器学习算法与Python学习
10+阅读 · 2018年9月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员