We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.
翻译:我们研究随机矢量 $\ boldsylmbol X} 的密度估计问题。 对于在顶端设置 $1,\ dots, d ⁇ $ 美元上定义的横贯树的 $T$, 树密度 $f ⁇ T} 是双变量条件密度的产物。 覆盖树的最佳值是 $T$。 覆盖树的最佳值是 $T$, 树的宽度差值为$T$ 和 $f_T} 最小。 从 i. d. d. 我们确定最佳树的值$T ⁇ $, 并高效地构建树密度估计 $f_ 美元, 这样, 在不给密度设置任何常规条件的情况下, $\ lip\\\ t\ infty}\ pint lef_ n (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\