Large-scale optimization problems that seek sparse solutions have become ubiquitous. They are routinely solved with various specialized first-order methods. Although such methods are often fast, they usually struggle with not-so-well conditioned problems. In this paper, specialized variants of an interior point-proximal method of multipliers are proposed and analyzed for problems of this class. Computational experience on a variety of problems, namely, multi-period portfolio optimization, classification of data coming from functional Magnetic Resonance Imaging, restoration of images corrupted by Poisson noise, and classification via regularized logistic regression, provides substantial evidence that interior point methods, equipped with suitable linear algebra, can offer a noticeable advantage over first-order approaches.


翻译:寻求稀少解决办法的大规模优化问题已变得无处不在,通常通过各种专门的第一阶方法加以解决,虽然这些方法往往速度很快,但通常会遇到条件不完善的问题;在本文件中,针对这一类问题,提出并分析内部点准乘数方法的专门变体。 关于各种问题的计算经验,即多期组合优化、功能性磁共振成像数据分类、恢复被Poisson噪音腐蚀的图像以及通过正规化后勤回归进行分类,这些都提供了大量证据,证明配备适当线性代数的内点方法能够提供明显优势,而不是一阶方法。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
南京大学《高级机器学习》课程,李宇峰老师,附slides
专知会员服务
167+阅读 · 2021年8月24日
专知会员服务
42+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
南京大学《高级机器学习》课程,李宇峰老师,附slides
专知会员服务
167+阅读 · 2021年8月24日
专知会员服务
42+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员