We construct deep operator networks (ONets) between infinite-dimensional spaces that emulate with an exponential rate of convergence the coefficient-to-solution map of elliptic second-order PDEs. In particular, we consider problems set in $d$-dimensional periodic domains, $d=1, 2, \dots$, and with analytic right-hand sides and coefficients. Our analysis covers diffusion-reaction problems, parametric diffusion equations, and elliptic systems such as linear isotropic elastostatics in heterogeneous materials. We leverage the exponential convergence of spectral collocation methods for boundary value problems whose solutions are analytic. In the present periodic and analytic setting, this follows from classical elliptic regularity. Within the ONet branch and trunk construction of [Chen and Chen, 1993] and of [Lu et al., 2021], we show the existence of deep ONets which emulate the coefficient-to-solution map to accuracy $\varepsilon>0$ in the $H^1$ norm, uniformly over the coefficient set. We prove that the neural networks in the ONet have size $\mathcal{O}(\left|\log(\varepsilon)\right|^\kappa)$ for some $\kappa>0$ depending on the physical space dimension.
翻译:我们建立远方操作器网络( ONets) 。 我们的分析涵盖扩散- 反应问题、 参数扩散方程, 以及等异质材料中的线性等离子体异方体等椭圆形系统。 我们利用光谱共振方法的指数趋同, 解决其解决方案具有分析性的边界值问题。 在目前的周期和分析环境中, 我们考虑在美元- 维周期域、 美元=1、 2 美元、 美元- 美元、 以及分析右侧和系数中设置的问题。 我们的分析涵盖了扩散- 反应问题、 参数扩散方程的参数等, 以及超离子系统。 我们利用光谱共振共振方法的指数趋同, 解决其解决方案具有分析性的边界值问题。 在目前的周期和分析环境中, 以经典的离子周期常规性为依次。 在[ Chen and Chen, 1993年] 和[Lu 等人, 20211] 和[Lu等人, 我们展示了与系数图相仿的深欧欧特欧基空间空间规模网络。