We consider a graph-structured change point problem in which we observe a random vector with piecewise constant but unknown mean and whose independent, sub-Gaussian coordinates correspond to the $n$ nodes of a fixed graph. We are interested in the localisation task of recovering the partition of the nodes associated to the constancy regions of the mean vector. When the partition $\mathcal{S}$ consists of only two elements, we characterise the difficulty of the localisation problem in terms of four key parameters: the maximal noise variance $\sigma^2$, the size $\Delta$ of the smaller element of the partition, the magnitude $\kappa$ of the difference in the signal values across contiguous elements of the partition and the sum of the effective resistance edge weights $|\partial_r(\mathcal{S})|$ of the corresponding cut -- a graph theoretic quantity quantifying the size of the partition boundary. In particular, we demonstrate an information theoretical lower bound implying that, in the low signal-to-noise ratio regime $\kappa^2 \Delta \sigma^{-2} |\partial_r(\mathcal{S})|^{-1} \lesssim 1$, no consistent estimator of the true partition exists. On the other hand, when $\kappa^2 \Delta \sigma^{-2} |\partial_r(\mathcal{S})|^{-1} \gtrsim \zeta_n \log\{r(|E|)\}$, with $r(|E|)$ being the sum of effective resistance weighted edges and $\zeta_n$ being any diverging sequence in $n$, we show that a polynomial-time, approximate $\ell_0$-penalised least squared estimator delivers a localisation error -- measured by the symmetric difference between the true and estimated partition -- of order $ \kappa^{-2} \sigma^2 |\partial_r(\mathcal{S})| \log\{r(|E|)\}$. Aside from the $\log\{r(|E|)\}$ term, this rate is minimax optimal. Finally, we provide discussions on the localisation error for more general partitions of unknown sizes.


翻译:我们考虑一个图形结构化的更改点问题, 我们在这个问题上看到一个随机矢量, 其平面常数常数为0, 其独立的Gaussian 坐标与固定图形的美元节点相对应。 我们感兴趣的是恢复与平均矢量的凝固区域相关的节点分割的本地化任务。 当分区 $\ mathcal{S} 仅包含两个元素时, 我们用四个关键参数来描述本地化问题的难度: 最大噪音差异 $\ gma2, 分区较小元素的大小 $\ Delta美元, 分区毗连部分的信号值差异的大小 $ $\ kapta2; 直径平面的平面重量之和 $_\\\\\\\\\\ 美元; 平面平面的信号值是 ================================== 平面值, 我们显示, 低的信号比值制度 =======xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
72+阅读 · 2022年4月15日
专知会员服务
41+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员