Deep learning (DL) has big-data processing capabilities that are as good, or even better, than those of humans in many real-world domains, but at the cost of high energy requirements that may be unsustainable in some applications and of errors, that, though infrequent, can be large. We hypothesise that a fundamental weakness of DL lies in its intrinsic dependence on integrate-and-fire point neurons that maximise information transmission irrespective of whether it is relevant in the current context or not. This leads to unnecessary neural firing and to the feedforward transmission of conflicting messages, which makes learning difficult and processing energy inefficient. Here we show how to circumvent these limitations by mimicking the capabilities of context-sensitive neocortical neurons that receive input from diverse sources as a context to amplify and attenuate the transmission of relevant and irrelevant information, respectively. We demonstrate that a deep network composed of such local processors seeks to maximise agreement between the active neurons, thus restricting the transmission of conflicting information to higher levels and reducing the neural activity required to process large amounts of heterogeneous real-world data. As shown to be far more effective and efficient than current forms of DL, this two-point neuron study offers a possible step-change in transforming the cellular foundations of deep network architectures.


翻译:深度学习具有在许多真实世界领域中与人类相当甚至更好的大数据处理能力,但代价是高能耗,这可能在某些应用中是不可持续的,而且错误虽然很少但可能很大。我们假设深度学习的一个根本弱点在于其内在依赖于最大化信息传输而不管当前上下文是否相关的整合-发射点神经元,这导致不必要的神经放电,以及无关和矛盾信息的前馈传递,这使学习困难且处理能量效率低下。我们展示了如何通过模仿基于上下文的新皮层神经元的能力来避免这些局限性,其通过接收来自不同源的输入作为上下文来放大和衰减相关和无关的信息传输。我们证明了由这些局部处理器组成的深度网络寻求最大化活跃神经元之间的协议,从而将冲突信息的传输限制在更高的水平,并减少处理大量异构实际数据所需的神经活动。作为比当前深度学习形式更有效和高效的两点神经元研究,这扩展了改变深度网络架构的细胞基础的可能性。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员