In [1], we inaugurated a new area of optimal control (OC) theory that we called "periodic fractional OC theory," which was developed to find optimal ways to periodically control a fractional dynamic system. The typical mathematical formulation in this area includes the class of periodic fractional OC problems (PFOCPs), which can be accurately solved numerically for a fractional order {\alpha} in the range 0 < {\alpha} < 1 using Fourier collocation at equally spaced nodes and Fourier and Gegenbauer quadratures. In this study, we extend this earlier work to cover periodic higher-order fractional OC problems (PHFOCPs) of any positive non-integer fractional order {\alpha}.
翻译:在之前的研究中,我们开创了一个新的最优控制(OC)领域,称之为“周期性分数OC理论”,旨在寻找以周期方式控制分数动态系统的最优方法。这个领域中的典型数学形式包括周期性分数OC问题(PFOCPs),通过等间距节点的傅里叶插值和傅里叶-杰根鲍尔积分,可以准确地数值求解分数阶{\alpha}在0<{\alpha} <1的问题。在这项研究中,我们扩展了先前的工作,涵盖了任何正的非整数分数阶{\alpha}的周期高阶分数最优控制问题(PHFOCPs)。