Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse ($\mathcal{NC}$). Recent papers have theoretically shown that $\mathcal{NC}$ emerges in the global minimizers of training problems with the simplified ``unconstrained feature model''. In this context, we take a step further and prove the $\mathcal{NC}$ occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit $\mathcal{NC}$ properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of $\mathcal{NC}$ under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.


翻译:现代深度神经网络在图像分类到自然语言处理等任务中取得了令人瞩目的性能。令人惊讶的是,这些具有大量参数的复杂系统在训练收敛时,在它们最后一层的特征和分类器中展现相同的结构特性。特别地,已经观察到,最后一层特征会崩溃(converge)到其类均值上,并且那些类均值是等角紧框(Equianglar Tight Frame)的顶点。这种现象被称为神经崩溃 ($\mathcal{NC}$) 。最近的论文已经理论证明,$\mathcal{NC}$ 在简化的“无约束特征模型”中的训练问题的全局最小化解中出现。在这个背景下,我们更进一步地证明了 $\mathcal{NC}$ 出现在 MSE和CE 损失的深度线性网络中,展示全局解在线性层中展现 $\mathcal{NC}$ 特性。此外,我们将我们的研究扩展到了 MSE 损失下不平衡数据,并在无偏设置下对 $\mathcal{NC}$ 进行了首次几何分析。我们的结果展示最后一层特征和分类器收敛到一组正交向量组成的几何形状上,其长度取决于其对应类别的数据量。最后,我们在平衡和不平衡情况下对合成和实际网络架构进行了理论分析的实证验证。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员