We revisit the direct sum questions in communication complexity which asks whether the resource needed to solve $n$ communication problems together is (approximately) the sum of resources needed to solve these problems separately. Our work starts with the observation that Dinur and Meir's fortification lemma can be generalized to a general fortification lemma for a sub-additive measure over set. By applying this lemma to the case of cover number, we obtain a dual form of cover number, called "$\delta$-fooling set" which is a generalized fooling set. Any rectangle which contains enough number of elements from a $\delta$-fooling set can not be monochromatic. With this fact, we are able to reprove the classic direct sum theorem of cover number with a simple double counting argument. Formally, let $S \subseteq (A\times B) \times O$ and $T \subseteq (P\times Q) \times Z$ be two communication problems, $ \log \mathsf{Cov}\left(S\times T\right) \geq \log \mathsf{Cov}\left(S\right) + \log\mathsf{Cov}(T) -\log\log|P||Q|-4.$ where $\mathsf{Cov}$ denotes the cover number. One issue of current deterministic direct sum theorems about communication complexity is that they provide no information when $n$ is small, especially when $n=2$. In this work, we prove a new direct sum theorem about protocol size which imply a better direct sum theorem for two functions in terms of protocol size. Formally, let $\mathsf{L}$ denotes complexity of the protocol size of a communication problem, given a communication problem $F:A \times B \rightarrow \{0,1\}$, $ \log\mathsf{L}\left(F\times F\right)\geq \log \mathsf{L}\left(F\right) +\Omega\left(\sqrt{\log\mathsf{L}\left(F\right)}\right)-\log\log|A||B| -4$. All our results are obtained in a similar way using the $\delta$-fooling set to construct a hardcore for the direct sum problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月29日
Arxiv
0+阅读 · 2023年11月28日
Arxiv
0+阅读 · 2023年11月28日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年11月29日
Arxiv
0+阅读 · 2023年11月28日
Arxiv
0+阅读 · 2023年11月28日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员