A Coefficient Inverse Problem for the radiative transport equation is considered. The globally convergent numerical method, the so-called convexification, is developed. For the first time, the viscosity solution is considered for a boundary value problem for the resulting system of two coupled partial differential equations. A Lipschitz stability estimate is proved for this boundary value problem using a Carleman estimate for the Laplace operator. Next, the global convergence analysis is provided via that Carleman estimate. Results of numerical experiments demonstrate a high computational efficiency of this approach.
翻译:考虑了辐射传输方程式的共效反问题。 开发了全球趋同数字法, 即所谓的混凝土化。 第一次, 将粘度解决方案考虑为两个相加部分差分方程式系统产生的边界值问题。 使用Carleman对Laplace操作员的估算, 证明Lipschitz 稳定性估算为这一边界值问题。 其次, 通过Carleman的估算, 提供了全球趋同分析。 数字实验的结果显示了这一方法的计算效率很高 。</s>