Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangulation for which Bose and Morin [Online routing in triangulations. SIAM Journal on Computing, 33(4):937-951, 2004] showed that there exists an online routing algorithm that is $O(1)$-competitive. However, a Delaunay triangulation can have $\Omega(n)$ vertex degree and a total weight that is a linear factor greater than the weight of a minimum spanning tree. We show a simple construction, given a set $V$ of $n$ points in the Euclidean plane, of a planar geometric graph on $V$ that has small weight (within a constant factor of the weight of a minimum spanning tree on $V$), constant degree, and that admits a local routing strategy that is $O(1)$-competitive. Moreover, the technique used to bound the weight works generally for any planar geometric graph whilst preserving the admission of an $O(1)$-competitive routing strategy.
翻译:平板嵌入图中的在线路线是若干领域的核心,并在文献中进行了广泛研究。对于大多数平板图来说,不存在O(1)美元(n)的竞争性在线路线算法,一个显著的例外是存在Bose和Morin[三角图中的在线路线]的Delaunay三角图。SIAM《电子学杂志》,33(4):937-951,2004年]显示,存在着一种O(1)美元的在线路线算法,具有竞争力。然而,对于大多数平板图来说,Delaunay三角算法可以具有美元/Omega(n)的垂直度和总重量,其线性系数大于最小横幅树的重量。我们展示了一个简单的构造,给Eucloidean平面上设定了美元为美元(treal $)的固定数字图,该图的重量小(在最小宽度树的重量比值为$(1美元/美元)的固定系数内),持续度,并承认当地测线战略是1美元(n)- 竞争力。此外,我们展示了一种技术约束性平面平面战略,用以维持了平面平面的平面平面平面平面平面平面平面平面平面平面的平面图。