3D models of manufactured objects are important for populating virtual worlds and for synthetic data generation for vision and robotics. To be most useful, such objects should be articulated: their parts should move when interacted with. While articulated object datasets exist, creating them is labor-intensive. Learning-based prediction of part motions can help, but all existing methods require annotated training data. In this paper, we present an unsupervised approach for discovering articulated motions in a part-segmented 3D shape collection. Our approach is based on a concept we call category closure: any valid articulation of an object's parts should keep the object in the same semantic category (e.g. a chair stays a chair). We operationalize this concept with an algorithm that optimizes a shape's part motion parameters such that it can transform into other shapes in the collection. We evaluate our approach by using it to re-discover part motions from the PartNet-Mobility dataset. For almost all shape categories, our method's predicted motion parameters have low error with respect to ground truth annotations, outperforming two supervised motion prediction methods.
翻译:3D 制造物体模型对于传播虚拟世界和为视觉和机器人合成数据生成非常重要。 最有用的是, 这些对象应该被表达: 它们的部件在互动时应该移动。 虽然存在表达的物体数据集, 但创建它们需要劳动密集型。 基于学习的对部分动议的预测可以有帮助, 但所有现有方法都需要附加说明的培训数据 。 在本文中, 我们提出了一个在部分组合的 3D 形状收集中发现表达的动作的不受监督的方法 。 我们的方法基于一个我们称之为分类结束的概念: 物体部件的任何有效表达应该将物体保留在相同的语义类别中( 例如, 椅子留在椅子上 ) 。 我们用一种算法来操作这个概念, 优化形状部分的参数, 这样它就可以转换成收藏中的其他形状 。 我们用它来重新从 PartNet- mobility 数据集中重新挖掘部分动作 。 对于几乎所有形状类别, 我们的方法预测的动作参数在地面描述方面都存在低误, 超过两种受监督的运动预测方法 。