This paper demonstrates spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN) at estimating scalar parameters of tissue microstructure from diffusion MRI (dMRI). Such microstructure parameters are valuable for identifying pathology and quantifying its extent. However, current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs), limiting the accuracy and precision of estimated microstructure indices. Machine learning (ML) has been proposed to address this challenge. However, existing ML-based methods are not robust to differing dMRI gradient sampling schemes, nor are they rotation equivariant. Lack of robustness to sampling schemes requires a new network to be trained for each scheme, complicating the analysis of data from multiple sources. A possible consequence of the lack of rotational equivariance is that the training dataset must contain a diverse range of microstucture orientations. Here, we show spherical CNNs represent a compelling alternative that is robust to new sampling schemes as well as offering rotational equivariance. We show the latter can be leveraged to decrease the number of training datapoints required.
翻译:本文展示了球状神经网络(S-CNN)在估计传播MRI(dMRI)产生的组织微结构的标度参数方面,相对于常规的完全联网网络(FCN)而言,具有明显的优势。这种微观结构参数对于确定病理学和量化其范围很有价值。然而,目前的临床实践通常获得DMRI数据,这些数据仅包括6个扩散加权图像(DWIs),限制了估计微观结构指数的精确度和精确度。为了应对这一挑战,已经建议了机器学习(ML),但是,现有的基于ML的方法对不同的DMRI梯度采样计划并不强有力,它们也没有轮换等同性。缺乏对采样计划的可靠性要求为每个方案培训新的网络,这就使得对多个来源的数据分析复杂化。缺乏循环变异性的一个可能后果是,培训数据集必须包含多种多样的微结构方向。在这里,我们展示了基于球状的CNN是一种令人信服的替代方法,它对于新的采样计划是强大的,并且提供了轮换性弹性。我们表明,后者可以用来减少所需培训点的数据数量。