This paper demonstrates spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN) at estimating scalar parameters of tissue microstructure from diffusion MRI (dMRI). Such microstructure parameters are valuable for identifying pathology and quantifying its extent. However, current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs), limiting the accuracy and precision of estimated microstructure indices. Machine learning (ML) has been proposed to address this challenge. However, existing ML-based methods are not robust to differing dMRI gradient sampling schemes, nor are they rotation equivariant. Lack of robustness to sampling schemes requires a new network to be trained for each scheme, complicating the analysis of data from multiple sources. A possible consequence of the lack of rotational equivariance is that the training dataset must contain a diverse range of microstucture orientations. Here, we show spherical CNNs represent a compelling alternative that is robust to new sampling schemes as well as offering rotational equivariance. We show the latter can be leveraged to decrease the number of training datapoints required.


翻译:本文展示了球状神经网络(S-CNN)在估计传播MRI(dMRI)产生的组织微结构的标度参数方面,相对于常规的完全联网网络(FCN)而言,具有明显的优势。这种微观结构参数对于确定病理学和量化其范围很有价值。然而,目前的临床实践通常获得DMRI数据,这些数据仅包括6个扩散加权图像(DWIs),限制了估计微观结构指数的精确度和精确度。为了应对这一挑战,已经建议了机器学习(ML),但是,现有的基于ML的方法对不同的DMRI梯度采样计划并不强有力,它们也没有轮换等同性。缺乏对采样计划的可靠性要求为每个方案培训新的网络,这就使得对多个来源的数据分析复杂化。缺乏循环变异性的一个可能后果是,培训数据集必须包含多种多样的微结构方向。在这里,我们展示了基于球状的CNN是一种令人信服的替代方法,它对于新的采样计划是强大的,并且提供了轮换性弹性。我们表明,后者可以用来减少所需培训点的数据数量。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员