Lithium-ion batteries are powering the ongoing transportation electrification revolution. Lithium-ion batteries possess higher energy density and favourable electrochemical properties which make it a preferable energy source for electric vehicles. Precise estimation of battery parameters (Charge capacity, voltage etc) is vital to estimate the available range in an electric vehicle. Graph-based estimation techniques enable us to understand the variable dependencies underpinning them to improve estimates. In this paper we employ Graph Neural Networks for battery parameter estimation, we introduce a unique graph autoencoder time series estimation approach. Variables in battery measurements are known to have an underlying relationship with each other in a certain correlation within variables of interest. We use graph autoencoder based on a non-linear version of NOTEARS as this allowed us to perform gradient-descent in learning the structure (instead of treating it as a combinatorial optimisation problem). The proposed architecture outperforms the state-of-the-art Graph Time Series (GTS) architecture for battery parameter estimation. We call our method GAETS (Graph AutoEncoder Time Series).
翻译:锂离子电池正在给正在进行的运输电气化革命提供动力。锂离子电池拥有更高的能源密度和有利的电化学特性,因此它成为电动车辆的首选能源来源。精确估计电池参数(装机容量、电压等)对于估计电动车辆的可用射程至关重要。基于图表的估计技术使我们能够理解作为这些参数基础的不同依赖性,从而改进估计。在本文中,我们采用图形神经网络来估计电池参数,我们引入了一种独特的图形自动编码器时间序列估计方法。已知电池测量中的变量在相关变量中具有某种关联性,因此在相关变量中具有内在关系。我们使用基于非线性版本的ONSARS的图形自动编码器,这样我们就可以在学习结构时进行梯度-白化(而不是将它作为组合式选择问题处理) 。拟议的结构比用于电池参数估计的州-艺术图形时间序列(GTS)结构要强得多。我们称之为我们的方法GAETSET(Graph Autout Ender时间序列)。