One potential future for the next generation of smart grids is the use of decentralized optimization algorithms and secured communications for coordinating renewable generation (e.g., wind/solar), dispatchable devices (e.g., coal/gas/nuclear generations), demand response, battery & storage facilities, and topology optimization. The Alternating Direction Method of Multipliers (ADMM) has been widely used in the community to address such decentralized optimization problems and, in particular, the AC Optimal Power Flow (AC-OPF). This paper studies how machine learning may help in speeding up the convergence of ADMM for solving AC-OPF. It proposes a novel decentralized machine-learning approach, namely ML-ADMM, where each agent uses deep learning to learn the consensus parameters on the coupling branches. The paper also explores the idea of learning only from ADMM runs that exhibit high-quality convergence properties, and proposes filtering mechanisms to select these runs. Experimental results on test cases based on the French system demonstrate the potential of the approach in speeding up the convergence of ADMM significantly.
翻译:下一代智能电网的一个潜在未来是利用分散优化算法和有保障的通信来协调可再生能源的产生(如风/太阳能)、可发送装置(如煤/煤气/核代)、需求反应、电池和储存设施以及地形优化,在社区中广泛使用倍增效应方向方法(ADMM)来解决这种分散化优化问题,特别是AC最佳电力流(AC-OPF),本文研究了机器学习如何帮助加速加速自动移动MD的融合以解决AC-OPF问题。它提出了一种新的分散化机械学习方法,即ML-ADMM,其中每个代理都利用深度学习学习来学习关于组合分支的共识参数。文件还探讨了仅从自动移动电离子系统学习、展示高质量融合特性的想法,并提出筛选这些运行的过滤机制。基于法国系统测试案例的实验结果显示加速加速自动组合的方法的潜力。