The introduction of the European Union's (EU) set of comprehensive regulations relating to technology, the General Data Protection Regulation, grants EU citizens the right to explanations for automated decisions that have significant effects on their life. This poses a substantial challenge, as many of today's state-of-the-art algorithms are generally unexplainable black boxes. Simultaneously, we have seen an emergence of the fields of quantum computation and quantum AI. Due to the fickle nature of quantum information, the problem of explainability is amplified, as measuring a quantum system destroys the information. As a result, there is a need for post-hoc explanations for quantum AI algorithms. In the classical context, the cooperative game theory concept of the Shapley value has been adapted for post-hoc explanations. However, this approach does not translate to use in quantum computing trivially and can be exponentially difficult to implement if not handled with care. We propose a novel algorithm which reduces the problem of accurately estimating the Shapley values of a quantum algorithm into a far simpler problem of estimating the true average of a binomial distribution in polynomial time.


翻译:引入欧洲联盟(欧盟)有关技术的一套全面条例,即《数据保护总条例》,赋予欧盟公民解释对其生活有重大影响的自动决定的权利。这构成了巨大的挑战,因为当今许多最先进的算法一般都是无法解释的黑盒。与此同时,我们看到量子计算和量子AI领域的出现。由于量子信息的易变性质,可解释性的问题被放大,因为量子系统测量摧毁了信息。因此,需要对量子AI算法进行热后解释。在传统背景下,Shapley值的合作游戏理论概念已经适应于热后解释。然而,这种方法并没有被轻描淡写地用于量子计算,如果不小心处理,则可能极难执行。我们提出了一个新的算法,将准确估计量子算法的损耗值的问题降低到一个更简单的问题,即估算多瑙时代的二元分布的真实平均数。</s>

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员