Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and Nystr\"om, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.
翻译:随机矩阵算法已成为科学计算和机器学习的工具。 为了安全地在应用中使用这些算法, 应用这些算法时, 应该与事后误差估计法相配合, 以评估输出质量。 为了满足这一需要, 本文建议了两种诊断方法: 随机的低级近似值的一次性误差估计器和估计随机矩阵计算结果差异的千斤顶重印法。 这两种诊断方法都能够快速计算随机的低级近似算法, 如随机的 SVD 和 Nystr\\"om, 它们提供了有用的信息, 可用于评估计算输出质量和指导算法参数选择 。</s>