Map matching is a common preprocessing step for analysing vehicle trajectories. In the theory community, the most popular approach for map matching is to compute a path on the road network that is the most spatially similar to the trajectory, where spatial similarity is measured using the Fr\'echet distance. A shortcoming of existing map matching algorithms under the Fr\'echet distance is that every time a trajectory is matched, the entire road network needs to be reprocessed from scratch. An open problem is whether one can preprocess the road network into a data structure, so that map matching queries can be answered in sublinear time. In this paper, we investigate map matching queries under the Fr\'echet distance. We provide a negative result for geometric planar graphs. We show that, unless SETH fails, there is no data structure that can be constructed in polynomial time that answers map matching queries in $O((pq)^{1-\delta})$ query time for any $\delta > 0$, where $p$ and $q$ are the complexities of the geometric planar graph and the query trajectory, respectively. We provide a positive result for realistic input graphs, which we regard as the main result of this paper. We show that for $c$-packed graphs, one can construct a data structure of $\tilde O(cp)$ size that can answer $(1+\varepsilon)$-approximate map matching queries in $\tilde O(c^4 q \log^4 p)$ time, where $\tilde O(\cdot)$ hides lower-order factors and dependence on $\varepsilon$.
翻译:暂无翻译