In this paper, the training dynamics of PINNs with a feature mapping layer via the limiting Conjugate Kernel and Neural Tangent Kernel is investigated, shedding light on the convergence of PINNs; Although the commonly used Fourier-based feature mapping has achieved great success, we show its inadequacy in some physics scenarios. Via these two scopes, we propose conditionally positive definite Radial Basis Function as a better alternative. Lastly, we explore the feature mapping numerically in a wide neural networks. Our empirical results reveal the efficacy of our method in diverse forward and inverse problem sets. Composing feature functions is found to be a practical way to address the expressivity and generalisability trade-off, viz., tuning the bandwidth of the kernels and the surjectivity of the feature mapping function. This simple technique can be implemented for coordinate inputs and benefits the broader PINNs research.
翻译:暂无翻译