Pre-trained models with dual and cross encoders have shown remarkable success in propelling the landscape of several tasks in vision and language in Visual Question Answering (VQA). However, since they are limited by the requirements of gold annotated data, most of these advancements do not see the light of day in other languages beyond English. We aim to address this problem by introducing a curriculum based on the source and target language translations to finetune the pre-trained models for the downstream task. Experimental results demonstrate that script plays a vital role in the performance of these models. Specifically, we show that target languages that share the same script perform better (~6%) than other languages and mixed-script code-switched languages perform better than their counterparts (~5-12%).


翻译:具有双重和交叉编码器的经过预先培训的模型在推进视觉问题解答(VQA)中视觉和语言的若干任务方面表现出了显著的成功。然而,由于这些模型受到黄金附加说明数据要求的限制,大多数这些进步没有看到除英文以外的其他语言的白昼光。我们的目标是通过引入基于来源的课程来解决这一问题,并针对语言翻译来微调经过培训的下游任务模型。实验结果显示,文字在这些模型的运行中发挥着至关重要的作用。具体地说,我们表明,拥有相同文字的目标语言比其他语言表现得更好(~6% ), 并使用混合手法的密码转换语言比其他语言表现更好(~ 5-12 % )。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员