Visual prompt learning, as a newly emerged technique, leverages the knowledge learned by a large-scale pre-trained model and adapts it to downstream tasks through the usage of prompts. While previous research has focused on designing effective prompts, in this work, we argue that compared to prompt design, a good mapping strategy matters more. In this sense, we propose SeMap, a more effective mapping using the semantic alignment between the pre-trained model's knowledge and the downstream task. Our experimental results show that SeMap can largely boost the performance of visual prompt learning. Moreover, our experiments show that SeMap is capable of achieving competitive zero-shot transfer, indicating that it can perform the downstream task without any fine-tuning on the corresponding dataset. This demonstrates the potential of our proposed method to be used in a broader range of applications where the zero-shot transfer is desired. Results suggest that our proposed SeMap could lead to significant advancements in both visual prompt learning and zero-shot transfer. We hope with SeMap, we can help the community move forward to more efficient and lightweight utilization of large vision models.
翻译:作为一种新出现的技术,视觉快速学习是一种新兴技术,它利用了通过大规模预先培训模式所学的知识,并通过使用速率使它适应下游任务。虽然先前的研究侧重于设计有效的速率,但在这项工作中,我们认为,与迅速设计相比,良好的绘图战略更为重要。从这个意义上说,我们提议Semap,一个利用先培训模式知识和下游任务之间的语义一致性的更有效的绘图。我们的实验结果表明,Semap可以在很大程度上提高视觉即时学习的性能。此外,我们的实验显示,Semap能够实现竞争性的零发式转移,表明它可以在不对相应的数据集进行任何微调的情况下完成下游任务。这显示了我们所提议的方法有可能在希望零发式转移的更广泛的应用中使用。结果显示,我们提议的Semap可以在视觉即学和零发式转移两方面带来重大进步。我们希望Semap,我们能帮助社区走向更高效、更轻量地利用大型视觉模型。</s>