Vibration signals have been increasingly utilized in various engineering fields for analysis and monitoring purposes, including structural health monitoring, fault diagnosis and damage detection, where vibration signals can provide valuable information about the condition and integrity of structures. In recent years, there has been a growing trend towards the use of vibration signals in the field of bioengineering. Activity-induced structural vibrations, particularly footstep-induced signals, are useful for analyzing the movement of biological systems such as the human body and animals. Footstep-induced signals can provide valuable information about an individual's gait, body mass, and posture, making them an attractive tool for health monitoring, security, and human-computer interaction. However, the presence of various types of noise can compromise the accuracy of footstep-induced signal analysis. In this paper, we propose a novel 'many-to-many' LSTM model with a KLD regularizer and L1 regularization, which is effective in denoising structural vibration signals, particularly for regimes with larger amplitudes. The model was trained and tested using synthetic data generated by a single degree of freedom oscillator. Our results demonstrate that the proposed approach is effective in reducing noise in the signals, particularly for regimes with larger amplitudes. The approach is promising for a wide range of applications of footstep-induced structural vibration signals, including healthcare, security, and technology.


翻译:振动信号在结构健康监测、故障诊断和损伤检测等工程领域中被广泛应用,尤其在生物工程领域中有了越来越多的应用。结构活动引起的振动,特别是脚步引起的信号,对于分析人体和动物等生物系统的运动非常有用。脚步产生的信号可以提供有关个体步态、体重和姿势的有价值信息,因此逐渐成为健康监测、安全和人机交互的理想工具。然而,各种类型的噪声会影响步态引起的信号分析的准确性。本文提出了一种采用KLD正则化和L1正则化的新型“多对多”LSTM模型,对结构振动信号进行去噪,特别是对振幅较大的系统有效。模型使用单个自由度振子生成的合成数据进行训练和测试。结果表明,所提出的方法有效地减少了信号中的噪声,特别是对振幅较大的系统更为有效。该方法为各种应用脚步引起的结构振动信号的领域提供了很好的机会,包括医疗保健、安全和技术等。

0
下载
关闭预览

相关内容

【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
44+阅读 · 2022年12月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月18日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员