Given a sequence of sets, where each set is associated with a timestamp and contains an arbitrary number of elements, the task of temporal sets prediction aims to predict the elements in the subsequent set. Previous studies for temporal sets prediction mainly capture each user's evolutionary preference by learning from his/her own sequence. Although insightful, we argue that: 1) the collaborative signals latent in different users' sequences are essential but have not been exploited; 2) users also tend to show stationary preferences while existing methods fail to consider. To this end, we propose an integrated learning framework to model both the evolutionary and the stationary preferences of users for temporal sets prediction, which first constructs a universal sequence by chronologically arranging all the user-set interactions, and then learns on each user-set interaction. In particular, for each user-set interaction, we first design an evolutionary user preference modelling component to track the user's time-evolving preference and exploit the latent collaborative signals among different users. This component maintains a memory bank to store memories of the related user and elements, and continuously updates their memories based on the currently encoded messages and the past memories. Then, we devise a stationary user preference modelling module to discover each user's personalized characteristics according to the historical sequence, which adaptively aggregates the previously interacted elements from dual perspectives with the guidance of the user's and elements' embeddings. Finally, we develop a set-batch algorithm to improve the model efficiency, which can create time-consistent batches in advance and achieve 3.5x training speedups on average. Experiments on real-world datasets demonstrate the effectiveness and good interpretability of our approach.
翻译:根据一组数据集的顺序,每个数据集都与一个时间戳相联,并包含任意的元素数量,时间数据集的预测任务旨在预测随后一组的元素。以往的时间数据集预测研究主要通过学习每个用户的顺序来捕捉每个用户的进化偏好。虽然我们有洞察力,但我们认为:1) 不同用户序列中潜伏的协作信号至关重要,但并未加以利用;2) 用户还倾向于显示固定的偏好,而现有方法则不予考虑。为此,我们提议建立一个综合学习框架,以模拟用户对时间数据集预测的进化和固定偏好,首先通过按时间顺序安排所有用户集的相互作用来构建一个通用序列,然后学习每个用户的进化偏好。特别是,对于每个用户设置的互动,我们首先设计一个进化的用户偏好模型组件来跟踪用户的时间变化偏好,利用不同用户之间潜伏的协作信号。这个组件保留一个存储相关用户和元素的记忆库,并根据当前编码的信息和过去的记忆不断更新他们的记忆。然后,我们从时间顺序来构建通用的全局性序列,我们用历史模型来分析每个用户的进化的进化模型,然后从每个用户的进化的进化的进化的进化的进化模型到进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化过程。