We reformulate and reframe a series of increasingly complex parametric statistical topics into a framework of response-vs-covariate (Re-Co) dynamics that is described without any explicit functional structures. Then we resolve these topics' data analysis tasks by discovering major factors underlying such Re-Co dynamics by only making use of data's categorical nature. The major factor selection protocol at the heart of Categorical Exploratory Data Analysis (CEDA) paradigm is illustrated and carried out by employing Shannon's conditional entropy (CE) and mutual information ($I[Re; Co] $) as two key Information Theoretical measurements. Through the process of evaluating these two entropy-based measurements and resolving statistical tasks, we acquire several computational guidelines for carrying out the major factor selection protocol in a do-and-learn fashion. Specifically, practical guidelines are established for evaluating CE and $I[Re; Co] $ in accord with the criterion called [C1:confirmable]. Via [C1:confirmable] criterion, we make no attempts on acquiring consistent estimations of these theoretical information measurements. All evaluations are carried out on a contingency table platform, upon which the practical guidelines also provide ways of lessening effects of curse of dimensionality. We explicitly carry out six examples of Re-Co dynamics, within each of which, several widely extended scenarios are also explored and discussed.


翻译:我们重新制定并重新制定一系列日益复杂的参数统计专题,将其纳入一个反应-共变(Re-Co)动态框架,该动态在没有任何明确功能结构的情况下加以描述。然后,我们通过只使用数据绝对性质,发现支持这种共变动态的主要因素,从而解决这些专题的数据分析任务。分类探索数据分析(CEDA)范式核心的主要要素选择议定书,通过使用香农的有条件的英特罗普(CE)和相互信息(I[Re;Co]$)作为两项关键信息理论测量标准加以说明和执行。通过评价这两种基于恒星的测量和解决统计任务,我们获得了若干计算准则,以便以实际和阅读的方式执行主要要素选择协议。具体地说,为评估CE和美元[Re]范式数据分析(CE1:可确认性)范式分析(CE1:C1:可确认性)和相互信息标准,我们没有尝试对这些理论信息计量进行一致的估计。所有评价都通过一个应急平台进行,我们明确阐述的六种实际准则。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员