Heterogeneous Information Networks (HINs) are labeled graphs that depict relationships among different types of entities (e.g., users, movies and directors). For HINs, meta-path-based recommenders (MPRs) utilize meta-paths (i.e., abstract paths consisting of node and link types) to predict user preference, and have attracted a lot of attention due to their explainability and performance. We observe that the performance of MPRs is highly sensitive to the meta-paths they use, but existing works manually select the meta-paths from many possible ones. Thus, to discover effective meta-paths automatically, we propose the Reinforcement learning-based Meta-path Selection (RMS) framework. Specifically, we define a vector encoding for meta-paths and design a policy network to extend meta-paths. The policy network is trained based on the results of downstream recommendation tasks and an early stopping approximation strategy is proposed to speed up training. RMS is a general model, and it can work with all existing MPRs. We also propose a new MPR called RMS-HRec, which uses an attention mechanism to aggregate information from the meta-paths. We conduct extensive experiments on real datasets. Compared with the manually selected meta-paths, the meta-paths identified by RMS consistently improve recommendation quality. Moreover, RMS-HRec outperforms state-of-the-art recommender systems by an average of 7% in hit ratio. The codes and datasets are available on https://github.com/Stevenn9981/RMS-HRec.


翻译:显示不同类型实体(如用户、电影和主任)之间关系的标签图表显示的是不同类型实体(如用户、电影和主任)之间的关系。对于HINs,基于元病的推荐人(MPRs)使用元病理(即由节点和链接类型组成的抽象路径)来预测用户偏好,并因其可解释性和性能而引起极大关注。我们观察到,MPRs的表现对于它们所使用的元病理非常敏感,但现有的工作是从许多可能的实体中手工选择元病理。因此,为了自动发现有效的元病理,我们建议基于元病理的元病理选择框架(即由节点和链接类型的抽象路径组成的抽象路径)用来预测用户偏好,并且由于下游建议任务的结果和早期停止近似战略而吸引了大量关注。RMSMS是一种一般模式,它可以与现有的所有MPRs-rbrassers一起工作。我们还提议在IMS-HR-racec 中采用新的MPR-ral-rass 等质量,其中使用一个总体关注机制,通过我们所选的MAR-ral-rass-rass-rass-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-ress-minaldaldaldaldald-ress-minaldaldald-minald-minaldald-modaldal-dal-modal-modal-modal-mod-modal-mod-mod-modal-modal-modal-modal-modal-modal-modal-modal-modal-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员