This paper presents both a priori and a posteriori error analyses for a really pressure-robust virtual element method to approximate the incompressible Brinkman problem. We construct a divergence-preserving reconstruction operator using the Raviart-Thomas element for the discretization on the right-hand side. The optimal priori error estimates are carried out, which imply the velocity error in the energy norm is independent of both the continuous pressure and the viscosity. Taking advantage of the virtual element method's ability to handle more general polygonal meshes, we implement effective mesh refinement strategies and develop a residual-type a posteriori error estimator. This estimator is proven to provide global upper and local lower bounds for the discretization error. Finally, some numerical experiments demonstrate the robustness, accuracy, reliability and efficiency of the method.
翻译:暂无翻译