This paper presents a radar odometry method that combines probabilistic trajectory estimation and deep learned features without needing groundtruth pose information. The feature network is trained unsupervised, using only the on-board radar data. With its theoretical foundation based on a data likelihood objective, our method leverages a deep network for processing rich radar data, and a non-differentiable classic estimator for probabilistic inference. We provide extensive experimental results on both the publicly available Oxford Radar RobotCar Dataset and an additional 100 km of driving collected in an urban setting. Our sliding-window implementation of radar odometry outperforms existing hand-crafted methods and approaches the current state of the art without requiring a groundtruth trajectory for training. We also demonstrate the effectiveness of radar odometry under adverse weather conditions. Code for this project can be found at: https://github.com/utiasASRL/hero_radar_odometry
翻译:本文介绍了一种雷达测量方法,该方法结合了概率轨道估计和不需地面真实就构成信息而深学的特点。特征网络经过培训,没有监督,仅使用机载雷达数据。凭借其基于数据概率目标的理论基础,我们的方法利用了一个深层次的网络处理丰富的雷达数据,以及一个无区别的经典测算器来测算概率。我们提供了关于公开提供的牛津雷达雷达机器人汽车数据集的广泛实验结果,以及在城市环境中收集的另外100公里驾驶器的实验结果。我们移动式雷达测量方法的实施超越了现有手工制作的方法,并接近了目前艺术状态,而不需要地心轨道来进行培训。我们还展示了在不利天气条件下雷达测量的有效性。该项目的代码见:https://github.com/utiasASRL/hero_radar_odorimasy。