Methods to certify the robustness of neural networks in the presence of input uncertainty are vital in safety-critical settings. Most certification methods in the literature are designed for adversarial input uncertainty, but researchers have recently shown a need for methods that consider random uncertainty. In this paper, we propose a novel robustness certification method that upper bounds the probability of misclassification when the input noise follows an arbitrary probability distribution. This bound is cast as a chance-constrained optimization problem, which is then reformulated using input-output samples to replace the optimization constraints. The resulting optimization reduces to a linear program with an analytical solution. Furthermore, we develop a sufficient condition on the number of samples needed to make the misclassification bound hold with overwhelming probability. Our case studies on MNIST classifiers show that this method is able to certify a uniform infinity-norm uncertainty region with a radius of nearly 50 times larger than what the current state-of-the-art method can certify.
翻译:在输入不确定性的情况下,神经网络的稳健性认证方法在安全临界环境下至关重要。文献中的大多数认证方法都是针对对抗性输入不确定性设计的,但研究人员最近表明需要考虑随机不确定性的方法。在本文件中,我们提议一种新的稳健性认证方法,在输入噪音随任意概率分布而变化时,将错误分类的可能性设定为上限。这一约束是一个受偶然限制的优化问题,然后使用输入输出样本重新制定优化,以取代优化限制。由此产生的优化将降低为具有分析解决方案的线性程序。此外,我们对使错误分类约束维持极有可能的样本数量制定了充分的条件。我们对MNIST分类者的案例研究表明,这种方法能够验证一个比目前最先进方法能够验证的半径近50倍的统一的不完全性-中度不确定性区域。