Consider patch attacks, where at test-time an adversary manipulates a test image with a patch in order to induce a targeted misclassification. We consider a recent defense to patch attacks, Patch-Cleanser (Xiang et al. [2022]). The Patch-Cleanser algorithm requires a prediction model to have a ``two-mask correctness'' property, meaning that the prediction model should correctly classify any image when any two blank masks replace portions of the image. Xiang et al. learn a prediction model to be robust to two-mask operations by augmenting the training set with pairs of masks at random locations of training images and performing empirical risk minimization (ERM) on the augmented dataset. However, in the non-realizable setting when no predictor is perfectly correct on all two-mask operations on all images, we exhibit an example where ERM fails. To overcome this challenge, we propose a different algorithm that provably learns a predictor robust to all two-mask operations using an ERM oracle, based on prior work by Feige et al. [2015]. We also extend this result to a multiple-group setting, where we can learn a predictor that achieves low robust loss on all groups simultaneously.
翻译:考虑补丁攻击, 当测试时, 对手在测试时操控一个带有一个补丁的测试图像, 以诱导有针对性的错误分类。 我们考虑最近的防守, 修补攻击, Patch- Cleanser (Xiang等人, [2022] ) 。 Patch- Cleanser 算法要求有一个预测模型, 以“ 两面均” 校正性属性。 这意味着当任何两个空白面罩取代图像部分时, 预测模型应该正确分类任何图像 。 项等 学习一种预测模型, 通过在随机培训图像地点用双面罩加强双面罩对双面罩对双面操作进行强化的分类, 并在增强的数据集中进行实证风险最小化( ERM ) 。 然而, 在无法实现的环境下, 当所有图像的所有两面操作都没有完全正确性时, 我们展示了一个机构风险管理失败的例子 。 为了克服这一挑战, 我们建议一种不同的算法, 能够学习一种预测性强性地对所有两面操作的两层操作的两面形操作进行稳健健。 [2015] 我们还将这一结果扩展到一个多组, 能够同时学习到一个小的组 。</s>