The integration of unmanned aerial vehicles (UAVs) into 5G-Advanced and future 6G networks presents a transformative opportunity for wireless connectivity, enabling agile deployment and improved LoS communications. However, the effective design and optimization of these aerial networks depend critically on high-quality, empirical data. This paper provides a comprehensive survey of publicly available wireless datasets collected from an airborne platform called Aerial Experimentation and Research Platform on Advanced Wireless (AERPAW). We highlight the unique challenges associated with generating reproducible aerial wireless datasets, and review the existing related works in the literature. Subsequently, for each dataset considered, we explain the hardware and software used, present the dataset format, provide representative results, and discuss how these datasets can be used to conduct additional research. The specific aerial wireless datasets presented include raw I/Q samples from a cellular network over different UAV trajectories, spectrum measurements at different altitudes, flying 4G base station (BS), a 5G-NSA Ericsson network, a LoRaWAN network, an radio frequency (RF) sensor network for source localization, wireless propagation data for various scenarios, and comparison of ray tracing and real-world propagation scenarios. References to all datasets and post-processing scripts are provided to enable full reproducibility of the results. Ultimately, we aim to guide the community toward effective dataset utilization for validating propagation models, developing machine learning algorithms, and advancing the next generation of aerial wireless systems.
翻译:暂无翻译