This paper presents a Bayesian method for identification of jump Markov linear system parameters. A primary motivation is to provide accurate quantification of parameter uncertainty without relying on asymptotic in data-length arguments. To achieve this, the paper details a particle-Gibbs sampling approach that provides samples from the desired posterior distribution. These samples are produced by utilising a modified discrete particle filter and carefully chosen conjugate priors.
翻译:本文介绍了一种巴伊西亚州确定跳跃Markov线性系统参数的方法,其主要动机是提供参数不确定性的精确量化,而不必依赖数据长度参数的无症状。为实现这一目标,本文详细介绍了粒子-Gibbs取样方法,从理想的后方分布中提供样本。这些样本是通过使用经过修改的离散粒子过滤器和仔细选择的同质预选方法生成的。