In this article we consider the linear filtering problem in continuous-time. We develop and apply multilevel Monte Carlo (MLMC) strategies for ensemble Kalman-Bucy filters (EnKBFs). These filters can be viewed as approximations of conditional McKean-Vlasov-type diffusion processes. They are also interpreted as the continuous-time analogue of the \textit{ensemble Kalman filter}, which has proven to be successful due to its applicability and computational cost. We prove that an ideal version of our multilevel EnKBF can achieve a mean square error (MSE) of $\mathcal{O}(\epsilon^2), \ \epsilon>0$ with a cost of order $\mathcal{O}(\epsilon^{-2}\log(\epsilon)^2)$. In order to prove this result we provide a Monte Carlo convergence and approximation bounds associated to time-discretized EnKBFs. This implies a reduction in cost compared to the (single level) EnKBF which requires a cost of $\mathcal{O}(\epsilon^{-3})$ to achieve an MSE of $\mathcal{O}(\epsilon^2)$. We test our theory on a linear problem, which we motivate through high-dimensional examples of order $\sim \mathcal{O}(10^4)$ and $\mathcal{O}(10^5)$.
翻译:在此文章中, 我们考虑连续时间的线性过滤问题 。 我们为混合 Kalman- Bucy 过滤器( EnKBFs ) 制定并应用多层次的 Monte Carlo (MLMC) 战略。 这些过滤器可以被视为有条件的 McKan- Vlasov 类型的扩散进程的近似值 。 这些过滤器也可以被解释为\ textit{ commplle Kalman 过滤器} 的连续时间模拟值 。 事实证明, 由于其适用性和计算成本, 这证明我们多层次 EKBF 的理想版本能够实现一个平均平方差错 $\ mathcal{ Olon2 。 这些差差差差差差差差差差要求我们高层次的O_\ xmusal_ r_ rexcal$ O_ m_ ma} (MSBFE) 和高层次的O_\ xem_ ral_ ral_ $_ mma_ r_ rus ral_ ral_ ral_ ral_ ral_ $_ ral_ rum_ $_ rum_ rum_ $_ $_ ral_ ral_ rum_ $_ rum_ $_ $_ r_ r_____ r_____ r___ r______ r_ r_ r______ r_ r_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ r_ r_ r_ r_ r_ r_ r_ r_ ral_ ral_ ral__ r_ ral_ r_ r_ ral_ ral_ r_ r_ r_ r_ r_____ r_ r_ r__ r_ r_________ r_ r_