A low-dimensional dynamical system is observed in an experiment as a high-dimensional signal; for example, a video of a chaotic pendulums system. Assuming that we know the dynamical model up to some unknown parameters, can we estimate the underlying system's parameters by measuring its time-evolution only once? The key information for performing this estimation lies in the temporal inter-dependencies between the signal and the model. We propose a kernel-based score to compare these dependencies. Our score generalizes a maximum likelihood estimator for a linear model to a general nonlinear setting in an unknown feature space. We estimate the system's underlying parameters by maximizing the proposed score. We demonstrate the accuracy and efficiency of the method using two chaotic dynamical systems - the double pendulum and the Lorenz '63 model.


翻译:低维动态系统作为高维信号在实验中观察到; 例如, 一个混乱的钟表系统的视频。 假设我们知道一些未知参数的动态模型, 我们能否通过只测量一次其时间演变来估计基本系统参数? 进行这一估计的关键信息在于信号和模型之间的时间相互依存关系。 我们提出一个以内核为基础的分数来比较这些依赖关系。 我们的分数将线性模型的最大可能性估计器与未知特征空间的一般非线性设置相容。 我们通过尽量扩大提议的分数来估计系统的基本参数。 我们用两种混乱的动态系统—— 双钟和Lorenz'63 模型—— 来显示方法的准确性和有效性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【斯坦福CS330】终身学习: 问题陈述,前后迁移,30页ppt
专知会员服务
25+阅读 · 2020年12月13日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福CS330】终身学习: 问题陈述,前后迁移,30页ppt
专知会员服务
25+阅读 · 2020年12月13日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员